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ABSTRACT OF THE DISSERTATION 

Riemannian Geometry of Orbifolds 

by 

Joseph Ernest Borzcllino 

Doctor of Philosophy in Mathematics 

University of California, Los Angeles, 1992 

Professor Peter Petersen, Chair 

We investigate generalizations of many theorems of Riemannian geometry to 

Riemannian orbifolds. Basic definitions and many examples are given. It is shown 

that Riemannian orbifolds inherit a natural stratified length space structure. A 

version of Toponogov's triangle comparison theorem for Riemannian orbifolds is 

proven. A structure theorem for minimizing curves shows that such curves can­

not pass through the singular set. A generalization of the Bishop relative volume 

comparison theorem is presented. The maximal diameter theorem of Cheng is gen­

eralized . A finiteness result and convergence result is proven for good Riemannian 

orbifolds, and the existence of a closed geodesic is shown for non-simply connected 

Riemannian orbifolds. 
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Introduction 

The purpose of this investigation is to see to what extent theorems in the 

Riemannian geometry of manifolds can be proven in the more general category of 

orbifolds. Roughly speaking a manifold is a topological space locally modelled on 

Euclidean space Rn. Orbifolds generalize this notion by allowing the space to be 

modelled on quotients of Rn by finite group actions. The term orbifold was coined 

by W. Thurston sometime around the year 1976-77. The term is meant to suggest 

the orbit space of a group action on a manifold . A similar concept was introduced 

by I. Satake in 1956, where he used the term V- manifold (See [Sl)) . The "V" was 

meant to suggest a cone-like singularity. Since then, the term orbifold has become 

the preferred choice probably because V- manifold is misleading in the sense that it 

seems to describe a type of manifold. We will see, however, many examples where 

orbifolds are not manifolds. In general they can be quite complicated topological 

spaces. Orbifolds have recent ly come up in the study of convergence of Riemannian 

manifolds. See for example [F2] and [A2]. Except for the notes of Thurston [T], 

there bas been very little investigation of orbifolds as a primary object of study. 

But, even there, Thurston's primary interest is to use the concept of orbifold 

as a tool for studying 3- manifold topology. What we wish to do is to provide a 

foundation for the study of the geometry of orbifolds and show how many standard 

and often used results in Riemannian geometry can be carried over to Riemannian 

orbifolds: Orbifolds which are locally modelled on Riemannian manifolds modulo 
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finite groups of isometries. What allows us to generalize these theorems is that 

the singular points of orbifolds form a small set, and that locally orbifolds have a 

relatively specific structure. 

The first section, Riemannian Orbifolds, gives all necessary definitions for an 

orbifold and states various known results (with references) which will help our 

analysis . In particular, we show that Riemannian orbifolds are naturally strati­

fied length spaces. The second section, Examples, is devoted to giving the reader 

a selection of elementary examples which should guide his intuition as he reads 

the paper. In the third section, Toponogov's Theorem for 01·bifolds, we gener­

alize the Toponogov triangle comparison theorem. In particular, we show that 

orbifolds which are locally covered by Riemannian manifolds with sectional curva­

tures bounded from below, also have curvature bounded from below in the sense 

of triangle comparison. The fourth section, The Structure Theo1·em for Geodesics 

in Orbifolds. pro,·ides a fundamental structure theorem for geodesics in orbifolds. 

We conclude that minimizing segments cannot pass through the singular set and 

continue to remain distance minimizing. In the fifth section, Volume Comparison 

fo1· Orbifolds, we demonstrate a generalization of the Bishop relative volume com­

parison theorem to orbifolds which locally satisfy a lower Ricci curvature bound. 

The sixth section, Sphere- Like Theorems, is devoted to a generalization of t.he 

maximal diameter theorem of Cheng. Specifically, we show that orbifolds with a 

lower Ricci curvature bound and maximal diameter have specific representations 

as suspensions over orbifold space forms of constant curvature. In section seven, 

2 



Finiteness Theorems, we generalize a result of M. Anderson to give finiteness result 

for the isomorphism classes of possible group actions ron Riemannian manifolds 

whose orbit spaces (which are orbifolds) satisfy lower bounds on Ricci curvature 

and volume, and an upper diameter bound . Moreover, we show how these bounds 

can be used to prove various precompactness results for orbifolds which arise as 

global quotients of Riemannian manifolds. The last section, The Closed Geodesic 

Problem, deals with the existence of closed geodesics on compact orbifolds . We 

show that non-simply connected orbifolds admit at least one closed geodesic. 

Riemannian Orbifolds 

A Ck Riemannian manifold is a coo differentiable manifold equipped with a Ck 

metric. Throughout this paper M will denote a coo Riemannian manifold. If the 

differentiability class of the metric is not coo, then this will be explicitly stated. 

Length Spaces 

The notion of a length space will be fundamental, and so we recall some defi­

nitions and related facts concerning them. See [G] for a more detailed discussion. 

D efinition 1 Let (X , d) be a metric space and let 1 : [a, b] ~X be a continuous 

curve. Then the length of/, denoted L(!), is defined to be the quantity 
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where the supremum is taken over all subdivisions a= t0 $ t 1 $ . .. $ tn+l = b of 

[a, bJ . 

Remar k 2 If (X, d) Is a Riemannian manifold then it can be shown that for a 

piecewise C 1 curve/, L('y) = 1: lli'lldt. See [R, page 106} . 

Proposition 3 The length function L is lower-semicontinuous. This means that 

if {en} : [0, lJ -r X is a sequence of continuous maps which converge pointwise to 

c : [0, 1} -t X, then L(c) $liminf L(c11 ). 

Proof: For any fixed partition 0 = t0 < .. . < tk = 1 we have 

. ow, for any c.> 0, 

Thus, 

lim inf L( en) 2:: :L d( c(ti-! ), c(ti)) for any fixed partition 

and therefore, 

liminfL(cn) 2:: s~r :2: d(c(t;_ 1),c(t;)) = L(c) . 
pariJLJons 

of [0,1] 

This completes the proof. 
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Definition 4 A metric space (X, d) is a length space if the distance between any 

two points of X is always equal to the infimum of the lengths of continuous curves 

that join them. 

Example 5 For the induced Euclidean metric, R2 - {p} is a length space, but 

R2 - {line segment} is not. See Figure 1. 

0 

Definition 6 Let X be a length space. A curve 1 : [0, 1] -+ X is called a mini­

mizing geodesic or segment if d( 1(t), 1(s)) = It - s!L(7), where t, s E [0) 1]. 

D efinition 7 Let X be a length space. A curve 1 : [0, 1] --+ X is a geodesic if its 

restriction to every sufficiently small interval is a minimi::ing geodesic. If X is a 

Riemannian manifold then this definition is equivalent to the standard definition 

where 1 is a geodesic if its tangent vector field 1 is self-parallel relative to the 

Levi-Civita connection \7 w V. Explicitly in symbols, \7.:, 1 = 0. 

D efini t ion 8 A length space X is geodesically complete if every geodesic 1 

[0, 1]--+ X can be extended to a geodesic :Y: R-+ X. 
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The following analogue of the Hopf-Rinow theorem holds for length spaces. A 

proof can be found in [G] . 

Theore m 9 If (X, d) is a locally compact length space then 

{a) The following a1·e equivalent: 

{i) (X, d) is complete 

{ii) M etric balls are relatively compact 

(b) If either {i) or {ii) holds1 then any two points can be joined by a minimal 

geodesic. 

For completeness we state the following version of the Arzela- Ascoli theorem. 

Theorem 10 Let fi : (X, p) --+ (Y, d) be an equicontinuous family of maps between 

a separable metric space X 1 and a locally compact met1·ic spaceY. If for all x E X 1 

the set {fi ( x)} is bounded1 then there exists a subsequence li,, --+ f con verging 

uniformly on compact sets. 

Proof: See [R, page 81] . 

Group Actions 

We will be dealing with the notion of isometry of a metric space X . There is 

a potential point of confusion that may arise when X is a Riemannian manifold. 

In this case, there are two competing notions of isometry, one local and the other 

global. 
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D efinition 11 Let (M,g) be a Riemannian manifold. A local isometry 'if; is a map 

from M to itself which preserves the metric tensor g. This means that ?j;" g = g. 

A global isomet1'y is a map from M to itself which preserves the distance funct ion 

d induced f1'om the metric tensor g. This means that for all x, y E M, we have 

d(?j;x, ?j;y) = d(x . y) . 

It is a classical result that in the case of Riemannian manifolds, a global isometry 

is necessarily a local isometry. See [KN, Theorem 3.10, page 169]. Let r be a 

group of isometries of a metric space X. Then f defines a natural group action 

0: fxX.----+X 

Proposition 12 Let M be a Ck, 1 ~ k ~ oo Riemannian manifold. Then the 

isometry group Isom(M) of M is a Lie group and the mapping 0 above is of class 

Ck . 

Proof: The isometry group Isom(M) is locally compact with respect to the 

compact-open topology [KN, Theorem 4.7]. By a result of Calabi-Hartrnan [CH] 

each isometry is of class Ck+1 . Thus, by a result of Montgomery- Zippin [MZ, page 

20 ], Isom(M) is a Lie group and the map 0 is of class Ck. See also (SW]. 

Definition 13 An action of r on X is effective if the condition gx = X \fx E 

X implies that g = identity. Said differently, the only element of r that fixes 

everything is the identity. 
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Definition 14 An action off on X is discontinuous if for every p EX, and every 

sequence of elements {gn} of r (where 9n are all mutually dt"stinct) the sequence 

{gnp} docs not converge to a point in X. 

D efinition 15 f acts properly discontinuously if 

( 1) If p, p' E X are not congruent mod r (ie . gp "/= p' fo r all g E f) 

then p, p' have neighborhoods U, V' such that gU n U' = 0 for all g E f. 

(2) F07' each p E X ) the isotropy group r p = {g E r I gp = p} is finite . 

(3} Each p EX has a neighborhood U such that fPU = U and such that 

gUn U = 0 fo1· all g ¢: rp. 

Proposition 16 Every discontinuous group r of isometrics of a metric space X 

acts propedy discontinuously. 

Proof: (See [1\ \ ]) Because the action is discontinuous, for each x E X the orbit 

rx = {gx I 9 E f} is closed in X . Given a point y outside t.he orbit rx, let r > 0 

be such Lhat. 2r is less than the distance between y and the orbi t rx. Let Ux and 

Uy be open balls of radius r centered at x and y respectively. Then gU:~: n Uy = 0 

for all g E r, so condition (1) holds. Condition (2) always holds for a discontinuous 

action . To prove (3), for each x E X , Jet r > 0 be such that 2r is less than the 

distance between X and the closed SCI. fx - {X} . Jt suffices to take the open ball 

of radius r· and center x as U. Tills completes the proof. 
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Definit ion 17 Let r be a group of isometries acting on a metric space X. Let A 

be a subset of X, and let p E A. Then the Dirichlet fundamental domain centered 

at p relative to A is the set 

vp = {x E A I d(x,p) $ d(x,gp) Vg E r} 

Orbifolds 

Following Thurston [T], (see also [Sl]), the formal definition of (topological) 

orbifold is as follows : 

D efinition 18 A {topological) orbifold 0 consists of a Hausdorff space X 0 called 

the underlying space together with the following additional structure. We assume 

X 0 has a countable basis of open charts U; which is closed unde1· finite inter:sections. 

To each U; is associated a finite group r,, an effective action off; on some open 

subset U; ofRn, and a homeomorphism</>;: U;--'- U;/f;. Wheneve1' U; c uj, there 

is to be an injective homomo1·phism 

! .. · r-~r-
'3 . ' ) 

and an embedding 

that the diagram below commutes: 
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(J. 
t 

1 
[J.;r . 

t t uj; J;j(r;) 

1 
fJ.;r . 

J ] 

u. • 
c U· J 

</J;; is to be regarded as being defined only up to composition with elements of 

ri, and /;i are defined only up to conjugation by elements of ri . In general, it is 

not true that J:k = Jik o J;i when U; c Ui c Ub but there should be an element 

case for manifolds, the covering { U;} is not an intrinsic part of the structure of an 

orbifold. We regard two coverings to give the same orbifold structure if they can 

be combined to give a larger covering stm satisfying the definitions. Hence, when 

we speak of an orbifold, we are speaking of an orbifold with such a maximal cover. 

It is clear that orbifolds are locally compact. and locally path connected, hence 

by elementary topology we have: 

Proposition 19 An orbifold 0 is connected if and only if 0 is path connected. 

One ea.sy way to get examples of orbifolds is given in the following 

Proposition 20 (Thttrston) The quotient space of a manifold M by a group r 

which acts properly discontinuously on lvf is an orbifold. 
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Proof: For any point X E M /I', choose X E M projecting to X. Let rx be the 

isotropy group of x. (fx depends on the particular choice of x) . There is a neigh­

borhood [Jx of X invariant by r X and disjoint from its translates by elements of 

r not in rx. The project ion of ux = Ux/fx is a homeomorphism. To obtain the 

required covering of M/f, augment some covering {Ux} by adjoining finite inter­

sections. Whenever UX] n ... n u:&k i= 0, this means that some set of translates 

11 Ux
1 
n ... n lk[Jxk has a corresponding non- empty intersection. This intersection 

may be taken to be Ux
1 
n .. . nUx"' with associated group 11fx

1 
1i""1 n ... n,krx~o 1;1. 

Definition 21 A Riemannian orbifold is obtained as above whe1·e we require that 

the U,. are convex, open (possibly non-complete) Riemannian manifolds diffeomor­

phic to Rn) the f; are finite groups of isomet1·ies acting effectively on U;; and the 

maps ;J>i are isomel1'ies. R ecall that for a Riemannian manifold to be convex means 

that there exists a unique minimal geodesic joining any two points. 

We will have the need to distinguish between two types of Riemannian orbifolds. 

D efinition 22 A good Riemannian orbifold is a pair (M, f) where M is a Rie­

mannian manifold and r is a (proper) discontinuous group of isometries acting 

effectively on M. The underlying space of the 01·bijold is 111 ; r. A bad Riemannian 

orbifold is a Riemannian orbifold which does not arise as a global quotient. 
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The Singular Set and Stratifications 

To each point x E U; in an orbifold 0 is associated a group f~), well- defined 

up to isomorphism within a local coordinate system: Let U; = Udf be a local 

coordinate system . Let x, y be two points wlllch project to x. Let rii) be the 

isotropy group of x. Then if I E f is the isometry such that !X = y, it is not 

hard to see that the isotropy group of y must be 1r1i)1_1 . Hence, the two isotropy 

groups are conjugate. Thus, up to isomorphism they can be regarded as the same 

group. We will denote this group by f~). The next proposition shows that f~) up 

to isomorphism, is also independent of coordinate system U;. 

Proposition 23 Let 0 be an orbifold and let x E 0 . Then the there exists a group 

r x; called the isotropy group at x) which is well- defined. For any coordinate chaTt 

U;) rx ~ r~i). 

Proof: (See also (S2]) Let X E U; n uj · Since the cover { U;} is closed under finite 

intersections, we may assume without loss of generality that U, c Ui . We first 

need to show that if X E U; c uj, has non- trivial isotropy in U;, then it also has 

non-trivial isotropy in Ui . To see this, choose I E f; with /X = x, I=/= identity. 

We have, by definition, 

Thus, /;i("') E ri fixes ~ii(x) . Note that since f;i is an injective homomorphism, 

!;i("') =f:. identity. Hence x, as an element of Ui also has non- trivial isotropy. This 
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shows that the notion of non-trivial isotropy is well-defined. Next we show that 

in fact the isotropy group r X is well-defined up to isomorphism. Let f1i) c f; , 

f~) C fj be the corresponding isotropy groups of X relative to the COOrdinate 

charts U;, [Jr Of course, these groups are only defined up to conjugation by 

elements in f" f 1 , respectively. We will assume in the discussion that follows that 

the appropriate conjugate of each has been chosen so that all maps make sense. 

We have already seen that there is an injective map fii : f~i) '--+ f~) . Let 1' E f~). 

To complete the proof, it suffices to show that J;i(J) = 1' for some 1 E f; . To see 

that this suffices, note that 

The last equality follows from the commutative· di.agram in Definition 18. Since 

J>ii is an embedding, then in fact, we conclude that 1 E fii). Thus. we will have 

shown that f,
1 

: r~;> ~ r~> is an isomorphism, and the proof will be complete. So. 

we now focus our attention on the existence of I · Let 1' E f(J) be arbitrary. Then 
X 

Thus, there exists f5, q E U; such that l'~;j(f5) = ~;j(q). Since r.o~;i(P) = 1ro¢1i(q). 

we have, by the commutativity of the diagram in Definition 18, 1r(f5) = r.( q). Hence, 

there exists 1 E f; with l(f5) = q. Let CJ
1 = ];j(l) . Then 

13 



Thus, by choosing ~ii(P) not to be in the singular set, which is possible by a result 

of M.H.A. Newman (see Proposition 26 below), then 1' = cr' = f;i(!) . Hence, we 

conclude that f~i) ~ f~) . We can now denote this group unambiguously by f x· 

This completes the proof. 

It is worthw bile at this point to observe the folJo,,·ing 

Proposit ion 24 Let 0 be a Riemannian orbifold. Let p E ui c 0. Choose p E U; 

so that it projects to p. Denote the isotropy group of j5 by rP. Then there exists 

- - isom -
a neighborhood UP c U; and corresponding UP c U; such that UP ~ Up/fp. The 

neighbo1·hood UP will be called a fundamental neighborhood of p. The open set UP 

will be called a fundamental chart. 

isom -
Proof: We have U; ~ U; /f where r is a finite group of isometries. ·Hence r 

acts discontinuously. Thus. there exists a neighborhood UP of p which is invariant 

under the action of rp and disjoint from its translates by elements of r not in rp. 

The projection of Ui>jr i> is then an isometry onto an open subset Up c U; . 

D efi nition 25 The singular set E0 of an orbifold 0 consists of those points x E 0 

whose isotropy subgroup r x is non- trivial. We say that 0 is a manifold when 

E0 = 0. We may also1 by abuse of definition1 call points in the local covering 

[Ji with non- trivial isotropy1 singular points also. This should cause no confusion 

since x E 0 is singular if and only if a c01-responding point x E U; is singular. 

14 



Proposition 26 (M.H.A Newman-Thurston} The singular locus of an orbifold is 

a closed set with empty interior. 

Proof: For any fundamental neighborhood U = [; /f, L;0 n U is the image of the 

union of the fixed point sets in [J of elements of r. Since r is finite, L;0 n U is 

closed, and thus E0 is closed. The last. statement follows from a result of M.H.A. 

Newman (see [D]) which states that if a finite group acts effectively on a connected 

manifold, the the set of points with trivial isotropy group is open and everywhere 

dense. Thus, locally. the points in [; wit.h non-trivial isotropy form a closed set 

with empty interior. Hence the image ~0 n U of these points has empty interior. 

Since E0 = U~1 L;0 n Vi, and 0 is a locally compact Hausdorff space, it follows 

from standard topology that 2:.:0 must have empty interior. This completes the 

proof. 

Remark 27 It should also be noted that the singular set is not. necessarily a 

submanifold and may have several connected components. 

To distinguish certain subsets of the singular set, we make the following definitions. 

Definition 28 Let U be a Riemannian manifold, and let G be a a finite group of 

isometries acting on U. Let H c G be a subgroup of G. The subset 
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is called the stratum of U associated with H . A stratification of U is the partition­

ing of U into strata corresponding to every subgroup of G. Note that under these 

hypotheses, any such stratification is the union of a finite number of strata. 

E xample 29 Let U = R2 , and let G c 0(2) be the group of isometries generated 

by refiect.ion in the X andy axes. Let H = z2, be the group generated by reflection 

in the x-axis. Then Uy is the x-axis minus the origin. Note that UH is not a 

closed submanifold of R2 , but it is a totally geodesic submanifold. 

ln order to analyze the strata we will need the following theorem contained in the 

proof of the Soul theorem of Cheeger- Gromoll [CG]: 

Lemma 30 (Cheeger-Gromoll) Let C -=f. 0 be a closed, connected, locally convex 

subset of a Riemannian manifold M. Then C carries the structure of an embedded 

k - dimensional submanifold of M with smooth totally geodesic interior int( C) = .\' 

and (possibly non- smooth} boundary fJC = N- N . 

Proof: Sec [CG, Theorem 1.6]. 

Vve have the following structure theorem concerning strata. 

Proposit ion 31 Any stratum UH associated to a subgroup H C G is locally con-

vex. 

Proof: Let X E UH · Let i(x) = inL: M . Then if y E UH n B(x, i(x)), the unique 

geodesic 1 from x to y lies in U H. To see this, suppose to the contrary that there 

is a point z E I such that fz #H. If H- fz =/= 0, then choose hE H- f., . Then 
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h1 is another minimal geodesic from x to y, which is absurd by the choice of y . 

Thus, H c rz, for all z E 1 · But: we know by Proposition 24, that if d(x, z) is 

small enough, then rz c r:r =H. But, then rz = H , and we have a contradiction. 

This completes the proof. 

By using the notion of tangent cone, we may in fact, strengthen the previous result. 

Proposit ion 32 Any stratum UH associated to a subgroup H C G is a totally 

geodesic submanifold of U . 

Pro of: Lemma 30 implies that the connected components of U H are embedded 

topological submanifolds of U with tot..ally geodesic, connected interior and (pos­

sibly) non- smooth boundary. We claim that auH = 0. To do this. let p E auH 

and form the tangent cone TpUH at p (see [CG]): 

TpUu = { v E TPU I e>..-pP t II: II E N for some positive 0 < t < r(p)} U {Op} 

where r(p) denotes the convexity radius a.t p. H follows, see[CGL that there exists 

q E N with the property that if 1 is the unit. speed segment joining p to q, then 

1(0) E TpUH, and -1(0) ~ TpUH· But, since q E UH, the corresponding H-action 

on TPU fixes 1'(0). Thus, -)'(0) is fixed. Hence, p cannot be a boundary point of 

U H . This completes the proof. 

R em a rk 33 If we define the subset u~ = {X E u I II c r :r} c u then UH c u~ 

and U~ is a closed totally geodesic submanifold of U. See [Ko}. Thus, although 
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UH c u~, UH -I- u~ in general. In the case of Example 29, u~ is the entire 

x-ax1s. 

Remark 34 The proof that U~ is a closed totally geodesic submanifold can be 

used to show that given any isometry g of a Riemannian manifold U, the fixed point 

set of g is a closed totally geodesic submanifold of U. See [Ko] . Since Riemannian 

orbifolds are locally (open) Riemannian manifolds modulo finite group actions, it 

follows that the singular set, locally, is the image of the union of a fin ite number 

of closed su bmanifolds of U. Since any su bmanifold of U has empty interior in U, 

by applying the same reasoning in the proof of Proposition 26, we can conclude 

that in the case of Riemannian orbifolds, the singular set is closed and has empty 

interior without reference to Newman's theorem. 

M etric St ruct ures 

In order to do Riemannian geometry on orbifolds we need to know how to 

measure the lengths of curves. To do this, we will need a way to lift curves locally, so 

that we may compute their lengths locally in fundamental neighborhoods. Finally, 

we will add up these local lengths to get the total length. This will interweave the 

local geometry of the fundamental neighborhoods with the geometry of the orbifold, 

which up until this point has not been described. The problem of course, is that 

locally these lifts are not unique. It will turn out, however, that the length of a 

curve is well- defined. One should keep in mind the techniques of standard covering 

space theory while reading this section. We adopt the following conventions: 0 
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will denote a Riemannian orbifold. For p E 0, up c 0 will be a fundamental 

neighborhood of p. 1r : UP - UPjrP will be the natural projection, and we will 

identify UP and UPjf P by isometry. Recall that a lift of a curve 1 c UP is a 

continuous curve .:Y CUP with 1r(.:Y) =I· In order to avoid pathological situations 

we make the following definition. 

D efini t ion 35 A curve 1 : (0, 1] - UP is admissible if the the interval [0, 1] can 

be decomposed into a co~mtable number of subintervals [t;, ti+1] so that li(t.,t,+
1

) 

is contained in a single stratum associated to a subgroup H C r P . A curve 1 : 

[0, 1] - 0 is admissible if it is admissible in every chart up such that, n up f= 0. 

Note that this is well-defined since the singular set is well- defined. 

Proposit ion 36 Let 7 : [0, 1] - UP be an admissible curve. Then there exists a 

curve i : [0, 1] - UP which is a lift of I · 

Proof: Decompose the interval [0, l] into (possibly an infinite number of) subin­

tervals [t;, t 1+1] so that /'; = li{t.,t,+d is contained in a single stratum associated 

to a subgroup H C rP. Note that 1r restricted to [;pH is an m- fold covering map. 

where m = (#r p)/(#H). This follows since rp j H is finite and has no fixed points 

in [;pH · Let s1 = Hti+l - t;). Once a preimage i;(s1) of l(s;) is chosen, there 

is a unique lift )'; of /i in upH· Requiring that the lift i be continuous gives a 

(non-unique) lift ofT This completes the proof. 
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Proposition 37 Let 1 : [0, 1} -t UP be an admissible curve. Then 1 has a well-

defined length. 

Proof: As in Proposition 36, decompose the interval [0, 1] into (a possibly infinite 

number of) subintervals [t;, t,-+1] so that /; = 1h,t;+
1

) is contained in a single 

stratum associated to a subgroup H c rP. Let m = (#fp)/(#H). Then 1; has 

exactly m lifts { i'Y)}::
1 

in UP and they are all disjoint, since 1r restricted to [;pH 

is an m-fold covering map. So define the length of li(t.,t;+l) = L ( i'ii)) where the 

right hand side is computed in UP" Since all other lifts i'Ji) differ from :Yii) by 

an isometry, thjs length is well- defined. To show that this length is independent 

of the fundamental neighborhood chosen, assume that 1l(t.,t,+
1

) c Ur = Up n U9 

then by the definition of Riemannian orbifold there are isometric jmbeddings of 

Ur into UP and into U9 which respect the various group actions. Hence, the length 

of i'l(t.,t,+d is independent of fundamental neighborhood chosen. Let N be the 

number of subintervals [t,-, t ;+1 ] . N = oo is possible. Define the length of 1 t.o be 

Nor oo 

L(l) = 2: L (¥},.)) . 
i = l 

If the sum does not converge, define L(l) = oo. 

We are now ready to prove the following theorem: 

Theorem 38 Let 1 : (0, 1] -. 0 be an admissible curve. Then 1 can be assigned 

an well- defined length L( 1) . 

Proof: By the Lebesgue number lemma, we can partition (0, 1] by 0 = t 0 < t 1 < 

... < tn = 1 so that 'YI[t;,t;+1J lies entjrely in a fundamental neighborhood of l(t;) . 
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By the previous proposition, we can ass1gn 'YI[o,t
1
J an unambiguous length. So 

suppose by induction a unique length L; can be assigned to 'YI[o,t,] · The previous 

proposition assigns a unique length fi+l to il[t;,t,+
1

] · Then define the length L;+l of 

1lro.t,+1J to be L, + fi+J · This finishes the induction and the proof is now complete. 

We are now in a position to give a length space structure to any Riemannian 

orbifold 0 . Given any two points x, y E 0 define the distance d(x, y) between x 

and y to be 

d(x,y) = inf {L(J) II is an admissible curve joining x toy} . 

Then (O, d) becomes a metric space. 

R emark 39 There is no loss in generality by defining d in terms of admissible 

curves instead of continuous curves. To see this, note that a continuous curve 

; · joining x to y has local lifts. See for example (B, Theorem II.6.2] . Let i be 

a particular local lift in some UP. Then since the singular set is locally convex 

by Proposition 31, if d(i'(s), i(t)) is sufficiently small and i'(s), i(t) belong to 

the same stratum, then we can replace .:Ylrs,t) by a geodesic segment i'lrs,t) entirely 

contained in a single stratum. Since L(.:Ylrs.tJ) ~ L(.:Y'lrs,t]), we can without loss of 

generality use admissible curves when computing d(x, y ) . 

Theorem 40 With the distanced above, (O,d) becomes a length space, and fur­

thermore, if ( 0, d) is complete, any two points can be joined by a minimal geodesic 

realizing the distance d( x, y). 
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Proof: (O,d) is a length space by definition and Remark 39. The second state-

ment follows by applying Theorem 9 and noting that orbifolds are locally compact. 

This completes the proof. 

R emark 41 In the case of a good Riemannian orbifold (M, r ), it follows that for 

x,yEMjr, 

This is because (A.f, d.l\1 ) is itself a length space. If M is complete, then it follows 

that x, y can be joined by a minimal geodesic which corresponds the projection of 

the minimal geodesic realizing the distance dM(7r- 1(x),7r- 1(y)) . 

A natural question to ask is whether a good Riemannian orbifold which is complete 

as an 01·bifold can arise as the quotient of a non-complete Riemannian manifold. 

This is answered in the next proposition. 

Proposition 42 Let 0 = (M, r) be a good Riemannian orbifold. Then 0 zs 

complete if and only if M is complete. 

Proof: By Remark 41, M complete implies that 0 complete. So suppose, 0 

is complete, but M is not complete. Then there exists a Cauchy sequence {p;} 

which does not converge to a point of M . Since the projection 1r to 0 is distance 

decreasing, the sequence { 1r(pi)} is Cauchy, and hence by completeness converges 

to a point p E 0. Let p E A1 be an element of 7r-1 (p), and let [;P be a fundamental 
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chart containing p. Let S; = ?r-1 (1r(p;)) n UP. Note that each S; is a finite set. 

Without loss of generali ty, we can assume there exists a Cauchy sequence { s;} 

converging to p, wi th s; E S;. For each i, let g; E r be such that g;(s;) = p;. 

Then note that the set {9;} contains only finitely many distinct elements because 

otherwise the set {gi1 (p;)} converges to p which contradicts the fact that r acts 

discontinuously. So by passing to a subsequence we may assume that 9; = g for 

all i . Then 

d(s;,fJ) = d(gs;,gfJ) = d(fJ; ,gfJ) 

By letting i- oo, we conclude that p;- gp E Nf. This completes the proof. 

We end this section with the following observation: 

Proposition 43 Riemannian orbifolds are locally simply connected. 

Proof: Let p E 0 be any point. and let UP be a fundamental neighborhood of p. 

Then we have gU'P n [J'P = 0 forgE r - r'P. Let r > 0 be such that B(p, r) c [JP 

for some lift p of p. Hence if 1 : 51 ~ UP is a closed curve based at p of length 

< r, then 1 lifts to a closed curve i : 5 1 
__, UP based at f5 with i C B(p, r) . But, 

- d.iffeo 
by definition of Riemannian orbifold, UP ~ Rn so in fact 1 is null-homotopic. 

isom -
Since UP ~ UP/f P' by projecting this homotopy, we conclude that 1 is also null-

homotopic. This completes the proof. 

From now on, unless otherwise stated 0 will be assumed to be complete R iemannian 

orbifold. 
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Exan1ples 

Example 1 Let M be any Riemannian manifold. i1 its universal covering space. 

Then (M,111(M)) is an orbifold with 1r1 (M) acting on Mas covering transforma­

tions. 

Example 2 Let M = R2 and let r be the group generated by the the rotation 

through angle 21r jn about 0. Then (M, f) is an orbifold whose underlying space 

is topologically R2 , but metrically is a cone. It is a Riemannian manifold except 

at the cone point where it bas a metric singularity and hence is not a manifold. 

Example 3 (Zp-footballs) Let /11 = 5 2 c R3 . Define a ZP-action on 52 by 

rotation around z-axis by an angl~ of 2r. jp. Here. the underlying space is (topo­

logically) 52 , but the orbifold is not a manifold since E consists of the north and 

souLh poles. 

Example 4 Let M be the 2-spberc as above. L<'L r be the group of order two 

generated by reflection across the xy- plane. Then M /f is topologically a 2-disc 

(a manifold with non-empty boundary). 

Example 5 (Zp-bemispheres) Let M be the 2-sphere as above. Let r be the 

group generated by reflection across the xy plane and rotation about the z-axis 

by an angle of 2r; / p. Then M j f is again topologically a 2-disc. 

Example 6 Let M = R3 and r generated by the antipodal map X f--t - X . Then 

M /f is topologically a cone over RP 2 , which is not a (topological) manifold at the 
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cone point. 

Example 7 By an appropriate quotient of S4 , the suspension over any of the 3-

dimensional lens spaces £3 can be realized. These spaces are compact and fail to 
p 

be (topological) manifolds at the suspension points. 

Example 8 Let M = R2 . Let p, q, r denote 3 integers so that there is a triangle 

6 with angles 7rjp,7rjq,7rfr . Thus~+~+~= 1. The only possibilities for p,q,r 

are (3,3,3), (2,3.6), (2,4,4). The full triangle group 6(p.q,r) is the group of 

isometrics generated by reflections in the 3 sides of the triangle. The translates of 

6 tile the plane. Let 6(p, q, 1·) be the subgroup of index 2 of orientation preserv-

ing isometrics. Then lvfj6(p.q,r) is a 2-sphere with 3 singular points. Similar 

constructions can be carried out. with quadrilaterals. 

All of the orbifolds listed so far are good, we now list two simple cases of bad 

orbifolds. 

Example 9 (ZP- teardrops) This space is topologically 5 2 with a single cone point 

of order p at the north pole. 

Example 10 (ZP- :Z9-footballs) This space is also topologically S2 with a cone 

point of order p at. the north pole and another cone point of order q at the south 

pole. 

Most of these examples are illustrated in Figures 2 and 3 on the following pages. 
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Toponogov's Theorem for Orbifolds 

One of the most useful results in Riemannian geometry is the Toponogov Trian­

gle Comparison Theorem. It says roughly that in the presence of a lower sectional 

curvature bound k, triangles in a Riemannian manifold M may be compared to 

triangles in the two-dimensional simply connected space form of constant curva­

ture k, denoted by Si- When k > 0 then S£ is the standard sphere S2 of radius 

7k, if k = 0 it is the Euclidean plane R2 , and if k < 0 it is the hyperbolic planes. 

The notion of triangle makes sense in any length space, and we say that a length 

space has (Toponogov) curvature ~ k if it satisfies the conclusion of Toponogov 's 

Theorem. We show that if a Riemannian manifold M bas sectional curvature~ k, 

then the orbifo1d 0\1, r) has curvature ~ k as a length space. 

Theorem 1 (Toponogov's Theorem for Orbifolds) Let 0 = (M,f) be a good R ie­

mannian 01'bifold such that J(M ~ k. Let li : [0, 1] ~ 0, i = 1, 2 be segments with 

~11 (0) = 1 2 (0) and L(J1) S 1rj.Jk. Fix s,t E (0,1) . Then choose li : [0,1] ~ Si 

with the p1·ope1'ty that 11(0) =!2(0) and d(!1(s),i2(t)) = d(i1(s),i2 (t)) . Then 

{i) d(i1(s'),i2(t')) S d(!1(s'),'Y2(t')) if s' ~ s, t' ~ t 

{ii} d(!J(s'),!2(t')) ~ d(ll(s'),i2(t')) if s' s s, t' s t 

Proof: The basic idea is to pull back everything to M, apply the standard To­

ponogov Theorem there and then push back down. The formal proof goes as 

follows: Pull back li to minimizing segments :Y: from r.-1 ( li(O)) to 1r-1 ( li(l)). 
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By applying an isometry if necessary we may assume the pull-backs form a hinge 

in M so that ,:Y1 (0) = ,:Y2 (0). Note that length restriction guarantees that sides of 

the hinge do not intersect each other. Now fix s, t E (0, 1). To prove (i), assume 

gov Comparison Theorem there exists a triangle contained inside Sf with sides of 

To prove (i i) we use (i). Let s'::; s, t'::; t . Consider the following triangles: 

• "l. 
\n SK. 

following triangle: 

,.J 

't, (s) 

\f\ 0 
lls') 

tn s~ 

---t---~ 
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By shrinking d5i(11(s),i2 (t)) to do(11(s),J'2(t)) in Figure 5 we get that 

But since 

we have 

as was to be shown . The proof of the Toponogov Theorem is now complete. 

This result implies that good orbifolds (M,f) with J{M ? k have Toponogov 

C1trvature ? k in the sense of length spaces. 

R emark 2 lu !BGP] it is shown that, for instance, a locally compact length space 

which has Toponogo\· curvature? k locally, has Toponogov curvature? k globally. 

Combining this result, with the Toponogov theorem above shows that (bad) orb­

ifolds modelled locally on Riemannian manifolds M with ](M ? k have Toponogov 

curvature ? k. 

The Structure Theoren1 for Geodesics in Orbifolds 

In this section we investigate the behavior of segments in orbifolds. The first 

result shows that the singular set L: is locally convex. 
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Proposition 1 Let 0 = (M, f ) be a good Riemannian orbifold, and let E be its 

singular set. Given p E E there exists ~P > 0 such that for all q E En B(p,E.p) any 

segment in 0 between p and q lies in E. Thus, E is locally convex. 

Proof: Note that the statement is trivial if p is an isolated point of E. So assume 

p is not isolated. Then there exists p E 1T-1(p) and a neighborhood UP so that 

isom -
for sufficiently small E.P, B(p, E.p) C U e: UP/f p· If necessary, choose E.P smaller 

so that 2£P < injPM. Suppose to the contrary that for some q E B(p,E.p) n E, 

there exists a segment 1 from p to q not entirely contained in E. Then there exists 

some point. r E 1 so that r P does not fix r. By taking a small enough metric ball 

around q which is contained in B(p, E.p), we may assume by Proposition 24 of the 

first section and definition of orbifold that rq c rP. Since #fq > 1, pulling 1 back 

to A1 gives rise to (at least) two segments from p to ij in A1 which is absurd since 

ij E B(p. E.p) and 2£P < injPAf. See Figure 6. This completes the proof. 

. -../ 
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The next lemma assures that a segment in an orbifold minimizes distance be-

tween any two of its points. 
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Proposition 1 Let 0 = (M, r) be a good Riemannian orbifold, and let E be its 

singular set. Given p E E there exists £P > 0 such that for all q E En B(p, .sp) any 

segment in 0 between p and q lies in E. Thus, E is locally convex. 

Proof: 1\ote that the statement is trivial if pis an isolated point of E. So assume 

p is not isolated. Then there exists p E r.- 1(p) and a neighborhood UP so that 

isom -
for sufficiently small £P, B(p, £p) C U ~ Up/f p· If necessary, choose cp smaller 

so that 2£P < injPM. Suppose to the contrary that for some q E B(p, t:P) n E, 

there exists a segment 1 from p to q not entirely contained in E. Then there exists 

some point r E 'Y so that rP does not fix r. By taking a small enough metric ball 

around q which is contained in B(p,£p), we may assume by Proposition 24 of the 

first section and definition of orbifold that f q c r p · Since #f q > 1, pulling 1 back 

toM gives rise to (at least) two segments from p to q in M which is absurd since 

q E B(p. £p) and 2.::P < injPM. See Figure 6. This completes the proof. 

The next lemma assures that a segment in an orbifold minimizes distance be-

tween any two of its points. 
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Lemma 2 Let 1: (0, 1] --+ 0 be a segment and let :Y C M be a lift of 1 such that 

by hypothesis. So, suppose that dM(rr-1(r),1r-1(s)) is realized by i', s' (where 

i = r' or s = s' is possible, but not both). By applying an isometry taking i' to 

r we can form a new path i' as follows: :Y' = (p, r,gs', hq) = dotted path shown 

in Figure 7 with g and h the isometries illustrated. T hen :Y' is a shorter path 

than 1 'vhich projects down to a path from p to q in 0, a contradiction since 

dM (p,q) = d0 (p, q) . This completes the proof. 

The last theorem of this section shows that in some sense the set E forms a geo-

metric barrier to length minimization. 

Theorem 3 Suppose 1 : [O,lJ ___. 0 is a segment. Let 1 (0) = p,1(1) = q. Then 

either 

(i) 1 C E or 
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{ii) 1 n E c {p} U { q} 

In particular, if!¢. E, then ,n E = 0, {p}, {q},or {p} U {q}. 

Proof: Suppose I rt E and that p ¢E. Then let rEI n E, T =!(to), to=/: 0 be 

the first time 1 intersects E. Note that such a first time exists , since E is closed 

and p ~ E. If t0 = 1, then 1 n E = { q}, which is fine. So assume t0 =/: 1. Now pull 

1 back toM and observe that there exists an isometry g E rr which must move p. 

But, then we can construct a branching geodesic as follows: Note that the curve 

-.:Y = (q,f,p) has the same length as -1' = (q,f,gp) . Since 1 is a segment we 

have 

L( -1') = L( -i·) = d(p, q) = d(fp, fq) 

\Ve therefore can conclude that -1' realizes the distance between gp and q, and 

thus it is a geodesic. But this situation gi\·es rise t.o a branching geodesic which is 

impossible in a Riemannian manifold . See Figure 8. 

- -- ---p .-J r1 
I 

Finally, if p E E and 1 ¢. E and 1 does not immediately leave E, then, by local 

convexity of E (Proposition 1), there exists c > 0 and 6 > 0 so that 1( c) c E for 

0 $ t $ £ < 1, and l(c + 60 ) ¢. E for 0 < 60 < 6. Then we have a curve that lies in 
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E, then tries to leave momentarily. This is identical to the situation above. Thus 

1 C E unless no such c exists. lri other words. 1 immediately leaves E, and we 

conclude that 1 can only intersect E again (possibly) at its endpoint q. The proof 

is now complete. 

Remark 4 Since all of the arguments of this section only used the local structure 

of orbifolds, all of these results hold for general orbifolds. 

The significance of the last theorem is apparent. H says that a segment cannot 

pass through the singular set unless it starts and/or ends there. A trivial conse­

quence of this is that the complement of 2: in 0 is convex as all points in 0- E 

can be joined by some segment. Thus, E cannot disconnect 0. \Ve will next state 

a criterion to determine when in fact an orbifold is a manifold. 

Corollary 5 A {complete} Riemannian 01'bifold 0 is a Riemannian manifold if 

and only if 0 is geodesically complete. 

P roof: By the structure theorem, if 0 is geodesically complete then E = 0. Hence 

it is a Riemannian manifold. If 0 is a Riemannian manifold, then the result follows 

from the Hopf- Rinow theorem. This completes the proof. 

Remark 6 It follows that a Riemannian orbifold 0 is an almost Riemannian space 

if and only if 0 is a Riemannian manifold. For the definition of almost Riemannian 

space, see [P). 

34. 



Volume Cornparison for Orbifolds 

The Bishop relative volume comparison theorem of Riemannian geometry is 

T heorem 1 Let M be a complete Riemannian manifold. Suppose RicM ~ 

(n- l)k. Then the function 

Vol B(p, r) 
r ~ ----'--..,-

Yolk B(p, r) 

is non- increasing. Yolk B (p, r) denotes the volume of the metric r- ball in Si:. 

Furthermo1·e, the limit as r ~ O+ is 1. 

Before we define the concept of volume for a Riemannian orbifold, we need to recall 

the following definitions: 

D efinit ion 2 Let X be a metric space. The u - algebra generated by the family of 

open sets in X is called the Borel u - algebm on X and will be denoted by B x. Given 

a measure J1. on B x, there is a unique mcasu1·c 7l which is complete and extends J1. . 

71 is defined on the new u - algebra 

Bx = Bx U {F IF c A, A E Bx and lt(A) = 0} 

and Jl(F) ~r 0. 

By Remark 34 and Remark 33 of the first section, the singular set is covered locally 

by the union of a finite number of totally geodesic submanifolds. Trus union thus 

has measure 0 relative to the canonical Riemannian measure in each UP. Since the 

natural projection to the orbifold is distance decreasing, it is natural to require 
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that any measure constructed on the orbifold assign the singular set measure 0. 

Of course, we also want the orbifold measure to be compatible with the local 

Riemannian measures that come from the covering. This is the thrust of the next 

proposition. 

Proposition 3 For any Riemannian orbifold 0 with singular set E, there exists a 

complete canonical measure Ji on B0 _y;, given by a unique volume form on 0- E. 

Furthermo1·e, 71 can be extended to a complete measure v on B0 . Explicitly, 

v(A) = p:(A- E)= f dVol 
JA-E 

for any A E B0 . Here, dVol is to be interpreted as dfl . In particular, v(F) = 0 jo1' 

any F C E. 

Proof: Let p E 0, and let UP ~ UPjf P be a fundamental neighborhood of p. 

Let r. : UP __, Up be the natural projection. Let tP = 7r-1(E n Up) · Then on 

Up- t, rp acts properly discontinuously without fixed points. Since the action is 

by isometries, the canonical Riemannian volume form n on [Jp is invariant under 

the action of rp . Hence it follows that there exists a unique volume form n on 

Up - E such that 1r·n = ft. See [BG, Lemma 5.3.9] . Since 0- E is connected 

we conclude that the volume form n is unique. Completing the resulting measure 

gives rise to a complete measure f1 on B0 _r:, which is to be extended to a complete 

measure v on B0 . The extension is given by the formula 

v(A) = p:(A- E) = ( dVo1 
}A-E 
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for A E 8 0 . Then 77 is indeed complete. Note that this definition ]s compatible 

with the canonical measure in each UP . For, tP E BoP and has measure 0 in UP 

since tP is the finite union of closed totally geodesic submanifolds of UP. Next 

since 1r is distance decreasing it must follow that 1r(i:P) = :En UP E 80 and has 

measure 0 in 0. This completes the proof. 

The geodesic structure theorem of the previous section says that once a geodesic 

hits the singular set it must stop. Thus, in some sense the domain of the "exponen-

tiar> map for an orbifold is smalleT than its counterpart in the local Riemannian 

covering. Combining this wi th the fact that the natural projection is distance 

decreasing gives us~ at least intuitively, reason to believe that volume cannot be 

concentrated behind singular points. It is this reasoning that enables us to now 

extend the Bishop relative volume comparison theorem to orbifolds, but first we 

need a notion of llicci curvature. 

Definition 4 A Riemannian oTbifold is said to have Ric0 ~ ( n -l )k if eveTy point 

is locally coveTed by a Riemannian manifold with Ricci cuTvature ~ ( n - 1) k . 

Theorem 5 Let 0 be a complete Riemannian orbifold with singular set :E . Sup-

pose Ric0 2: ( n - 1 )k. Then the function 

ts non-increasing. Yolk B (p, r) denotes the volume of the metric r-ball in Si: . 

Furthermore) the limit as r --+ 0 is #}p J where r p is the isotropy subgroup at p. 
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Proof: Note that 0- ij is a (non- complete) Riemannian manifold. Fix p E 0 . 

Let c:; ~ 0 be a sequence of real numbers, and {p;}, a sequence of points in 0 such 

that d(p, p;) < c:; . Then clearly, 

.lim dH (B(p;, r ), B(p, r )) = 0 
t-->00 

where dH denotes the usual Hausdorff distance between sets in the metric space 

0 . It follows that 

VolB(pi ,T)-+ Vo1B(p,r) . 

To see this, define the characteristic function XA : 0 ~ R for a subset A C 0 to 

be 

XA(x) = { 
0 ifxrfA 

1 if X E A 

Then we have that 

XB(p,.r) ~ XB(p,r) 

pointwise almost. everywhere. For, if x E B(p, r ), then d(p, x) = r- 5, 5 > 0, thus 

by the triangle inequality: 

d(pi, X) $ d(p, Pi )+ d(p, X) $ d(p,pi) + T- 5. 

Hence, if i is chosen so that d(p,pJ < ~5, then x E B(p;,r). On the other hand, if 

x ¢: B(p, T ), then a similar argument shows that x ¢: B(p;, r) for sufficiently large 

2. Thus, by Lebesgue dominated convergence 

Vol B(p;, r) = fo_-s XB(p;,r) d\!ol-+ k--r. XB(p,r) dVol =Vol B(p, r) 
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where dVol is the Riemannian measure on 0- E. Since 0 - E is convex, and we 

have a well- defined exponential map expp; defined on the interior of Cut(p;)- E C 

CuL(pi), where Cut(p;) denotes the cut locus at p;, we can apply the standard 

volume comparison theorem to conclude that 

VolB(p;,r) VolkB(p,1·) 
--------~> . 
Vol B(p;, R) - Yolk B(p, R) 

Letting i ---; oo gives 

Vol B(p, r) Yolk B(p, r) 
----~~ > . 
Vol B(p, R) - Yolk B(p, R) 

To prove the last statement of the theorem, consider a fundamental neighborhood 

Up is,g,m Upjr p· Let r > 0 be such that B(p, r) c Up . Choose a point q not in the 

fixed point set of f P and choose a Dirichlet domain Vr c B(p, r) centered at q. 

Then the translates of Vr cover B(jj, r) and have volume equal to .J,L~ ·Vol B(p, 1·) . 
.... p 

Since from standard volume comparison we have 

l
. Vol B(p, r) 
lffi = 1 

r-+O+ Yolk B(p, 7') 

we conclude 

. VolB(p, r) 1 
hm = --. 

r-o+ Yolk B(p, r) #f P 

This completes the proof. 

Sphere-Like Theorems 

The well-known Maximal Diameter Theorem states 
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Theorem 1 (Cheng [C]) Let M be a complete n-dimensional Riemannian man-

ifold with Ric111 2: (n- 1), and diam(M) = 1r _ Then M is isometric to Sn with 

constant curvatu1·e 1. 

The following example shows that this theorem cannot be directly generalized. 

Example 2 Let L 3 be the three dimensional lens space of order p. Let 0,.. = EL3 
p y p 

the suspension over L!. Then OP is an orbifold with Ricci Curvature 2: ( n -1) and 

diameter= 1r. See Example 7 on page 25. However, by the suspension isomorphism 

and thus the family { OP} contains infinitely many homotopy types. 

In order to prove an orbifold version of Cheng's theorem we wil l need to recall the 

following definitions and results. 

D efinition 3 A bounded metric space (X. d) is said to ha·ve excess ~ £ provided 

that theTe aTe points p, q E X such that d(p, x) + d( x, q) ~ d(p, q) + E joT all x E X. 

The excess, denoted e(X), is the infimum over all£ ;::::: 0 such that X has excess 

::; c:. 

Remark 4 If X is compact then there exists p, q E X such that d(p, x) + d( q, x) ~ 

d(p, q) + e(X) for all x EX. 

The next proposition is a simple generalization to orbifolds of a result in [GPl]. We 

use the notation there: B(p. T) will denote the closed metric r-ball in 0 centered 

at p, and V(n, r) the volume of an r-ball in sn of constant curvature L 
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Proposit ion 5 Let 0 'be a complete Riemannian orbifold with Ric0 ~ (n - 1) 

and diam(O) = D. Tf p, q E 0 with d(p, q) = D and a+ fJ = D then 0 = 

B (p,a +c:)UB(q,fJ+c:) whenever V(n,c:) ~ V(n,D) -2V(n,~D) . In particulat·) 

e( 0) ::; 2c:. 

Proof: (See [GPl]) Suppose to the contrary that there is an x E 0 with d(x,p) ~ 

a+ c: and d(x, q) ~ fJ + c: . Then the interiors of the closed balls B(p, a), B (q, {J), 

B (x,c:) are pairwise disjoint. Hence 

YolO> VolB(x.c:)+ VolB(p,a)+ VolB(q,{J) 

YolO ( ) ~ V(n,D) V(n,c:) + V(n,a) + V(n,{J) 

Vol 0 ( I ) . . 1 ) 
~ V(n,D) l (n,c: + 2V(n, 2n) . 

The second inequality follows from the orbifold volume comparison theorem of the 

previous section, and the last follows by noticing that the function 

f (a) = V(n, a)+ V(n, D- a)= const.(n) (loa sinn-l t dt +faD-a sinn- I t dt) 

has a single critical point in the interval [0, D] at a= ~D where it is a minimum. 

To see the last statement, suppose£ is such that V(n,c:) ~ V(n,D)- 2V(n, ~D). 

Fix x E 0 . Choose o so that d(p, x) = o + c. . Let x; --+ x be a sequence of 

points with d(p, x;) = a+£. + 8;, 8; -' 0. Then if fJ = D - a we have, since 

0 = B (p,o+c:) UB(q,fJ+c:), d(q,x;) s; fJ+t: . Thus, 

d(x;,p) + d(x;, q)::; (a+ c: + 8;) + (fJ + c:) = D + 2c: + b; 
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Letting i -+ oo we get 

d( X) p) + d( X) q) - D :5 2£ 

Since x was arbitrary, we conclude that e(O) :52£. This completes the proof. 

R emark 6 It follows that Riemannian orbifolds with Ric0 ~ (n-1) and diameters 

close to 1r have small excess. In particular, if diam( 0 ) = 1r, then e( 0) = 0. 

D e fin it ion 7 Let X be a length space with Toponogov curvature ~ 1. Then the 

sin-suspension, EsinX of X is the topological suspension, 

EX= X X [0,7rJ/ X X {0,7r} 

equipped with the following metric. Let (x,t), (y,s) be two points of EX, then 

where ri are great circle arcs paramct?·ized by arclength, with 11 (0) = 12(0) and 

L(-11(0),..:!2(0)) = dx(x,y). ~:nx will denote them-fold sin-suspension 

En: X = Esin . .. Esin X s•n ~ 
m 

R e mar k 8 If X is a complete Riemannian manifold with Ricx ~ (n- 1) then it 

follows from general formulas for a Riemannian warped products that the radial 

curvatures of EsinX are = 1. See [BO] and [G P2]. Also there is a notion of sin-

suspensions over general length spaces, but even if the length space has Toponogov 

curvature ~ k, k < 0, the resulting suspension will not have Toponogov curvature 

42 



~ k for any k E R. For example, let T 2 = 5 1 x 5 1 be the flat torus. Then ~sinT2 

does not have Toponogov curvature 2: k for any k E R. See [BGP]. 

Proposition 9 (Grove-Petersen) Let X be a complete length space with Topono­

gov curvature ~ 1 and diameter= 1r. Then X contains a 1r-convex subset E such 

that X is isometric to ~sinE. Moreover, e(X) = 0 and is realized by two points 

p, q with d(p,q) = 1r, and E = {x E X I d(p,x) = d(q,x) = ~1r}. 

Proof: See [GP2]. 

D efinit ion 10 A n- dimensional orbifold space form of constant curvature k is a 

good o1·bifold (M, r), where M is~m 5~, the n - dimensional simply connected Rie­

mannian space form of constant curvature k. If n = 0, there are exactly two such 

orbifold space forms, namely, the metric space consisting of exactly two points 

{x,y} with d(x y) = 1rjVk and the metric space consisting of a single point. Note 

that technically these two metric spaces can be regarded as 0- dimensional Rie­

mannian space forms . 

The next proposition is a kind of analogue of the Grove-Shiohama [GS] sphere 

theorem. 

Proposition 11 Let 0 be an n - dimensional space form of constant curvature 1. 

If diam( 0) < 1r, then1 in fact, diam( 0) ~ ~7r. 

Proof: Assume~1r < diam(O) <'IT. Letp, qbesuch thatd(p,q) = diam(O). Then 

d( ?T- 1 (p), 7r-1(q)) > ~7r . In particular, the finite set ?T-1(p) = {p1 , ... ,pm} lies 
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entirely in an open hemisphere H. We can construct the center of mass if_ E Rn+I 
c 

of the set ?r-1(p), namely, 

_ P1 + ... + .Pm 
p'=-----

c m 

Then fYc lies in the convex hull of ?r-1 (p) and hence lies in the open half- space 

containing II. Thus, P'c projects to a unique point Pc E H c sn 0 Since the center 

of mass frc is fixed by r, ftc is fixed . Its antipode -.Pc, must also be fixed. Thus 

diam( 0) = 1r, which is a contradiction. This completes the proof. 

R emark 12 For a Riemannian space form the proposition follows easily from the 

sphere theorem of Grove- Shiohama [GS] . 

Theorem 13 Let 0 = ( M , f) be a complete good n- dimensional Riemannian 

orbifold with RicM ;::: (n- 1). If diam(O) = 1r then M = Sn and 0 = Sn/f. 

whe?'C r c 0( n + ] ) is a finite group of isometries of Rn+l 0 Furthetmore) either 

0 = sn 01' 0 is a closed hemisphere) or 0 = ~~~mx, for some] ~ m < n) where 

X = sn-m /f with diam(X) ::; ~?r. in particular) if n = 21 then 0 must be either 

52 
J a Zp - football, a closed hemisphe?'e) or a zp -hemisphere. 

Proof: By Myers' theorem, diam(M) ~ 1r. Since diam(O) = 1r, there exists a seg-

ment in M of length 1r, so diam(M) = ?r . By Cheng's maximal diameter theorem, 

it follows that M i~m sn' the sphere of constant curvature 1. Choose p, q E 0 

with d(p, q) = 7r, and let 7 be a segment joining them. This segment then lifts to 
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a great circle arc on M = sn. Denote the preimages of p, q by p, q respectively. 

Observe that each element of r must fix both p, q. To see this, suppose that p is 

not fixed by some element 9 E r. Let 9P = fl . Note f5' =/= q. Thus, the piece of 

great circle arc joining f5' to q which has length < 1r, pushes down to a curve in 0 

of length < 7i connecting p to q, which is a contradiction. Thus, every element of 

r must fix p and q. Let N = {x EM !9x = x V9 E r}. Then N c M is a closed 

totally geodesic su bmanifold containing f5 and q. Hence diam(N) = 7i and N satis­

fies the cun·ature hypothesis of Cheng's theorem since it is totally geodesic. Thus, 

N i~m Sk for some 0 ~ k < n . Here we define S 0 of constant cun·ature 1 to be the 

two element metric space {x,y} with d(x,y) = 1r, and S1 of constant curvature 

1 to be the circle of radius 1 contained in R2 . Now, 0 satisfies the hypothesis of 

Proposition 9 by applying the Toponogov theorem for orbifolds. Hence, o·= EsinE, 

where E = {x E 0 I d(p,x) = d(q.x) = t7i} . Note that r.-1(E) = sn-1 c sn. the 

equator relative top and q. To see this, suppose x E E. Choose x E r.- 1 (x) so that 

d(p,x) = ~7(. But then, since r fixes p, d(p,r.- 1(x)) = ~r., which implies that 

1r-1 (x) c sn- t . Now suppose x E sn- 1
• Then ~r. = d(p, x) = d(9p, 9x) = d(p, 9x) 

for all 9 E r. Thus, r.(x) E E and hence r.-1 (E) = sn-l. Observe that sn-1 is 

invariant under r. The problem now reduces to two cases: (1) N = S0 , and (2) 

N = Sk, 0 < k < n. In case (1), just observe that by definition of N no point of 

sn-1 is fixed by every element of r. Hence, E isom sn-l /f is a (n - I)-dimensional 

orbifold space form of constant curvature 1, and diam(E) < r.. The argument that 

the diameter must be less than r. is the same as in the beginning of this proof. By 
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the previous proposition, diam(E) ~ ~~~ . For case (2), TakeS= S 1 C N = Sk 

to be any great circle c N containing p and ij . Then { i, y} = S n sn-1 are fixed 

by r, and hence E = 11(Sn-l) has diam(E) = " · Finally, since sn-1 is invariant 

under r , we can proceed by induction to get the conclusion of the theorem. This 

completes the proof. 

Remark 14 Note the natural inclusion of O(n) C O(n + 1) naturally extends any 

isometric group action on sn-l to an isometric action on sn' in which the original 

action is now an action on an equator of sn. This induced group action fixes 

the two antipodal points of sn which lie on the line in Rn+l perpendicular to this 

equator. The resulting n-dimensional orbifold space form must be a sin- suspension 

over E, the equatorial quotient, by Proposition 9. Hence, we can conclude that 

the sin-suspension of an orbifold space form is again an orbifold space form. 

At this point we can only extend Theorem 13 to general orbifolds if we replace the 

Ricci cur vature assumption by a Toponogov curvature assumption . 

Theorem 15 Let 0 be an n-dimensional Riemannian orbifo/d with Toponogov 

curvature ~ 1 and diam( 0) = " . Then 0 is a good Riemannian orbifold and 

hence satisfies the conclusion of Theorem 13. 

Proof: Choose points p, q E 0 with d(p, q) = r.. Then by Proposition 9, 0 = 

r,sinE, where E = {x E 0 I d(p,x) = d(x,q) = ~?r} . Choose a fundamental 

neighborhood up for p. T hen up is a warped product [O,r) Xsin E. B ut up is 
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isometric to some Upjrpl where {;pis a Riemannian manifold. Since rp preserves 

distance spheres, we can concl ude that UP must be a warped product. Since UP 

is a Riemannian manifold, UP= [0, r·) xsin (Sn-l, can). Thus UP is an open metric 

lSOITl 

ball in (Sn, can). Since 0 is a sin- suspension, E ~ (Sn-I, can)/fP . This shows 

that 0 is isometric to a quotient of (Sn, can) by a group of isometries rp and hence 

0 is a good Riemannian orbifold. The proof is now complete. 

In the case of a lower Ricci curvature bound we can prove the following 

Theore m 16 Let 0 be ann- dimensional Riemannian orbifold with Ric0 2:: (n-

1) and diam(O) = 1r. Then the underlying space of 0 is homeomorphic to the 

underlying space of a good topological orbifold. 

Proof: Choose points p, q E 0 with d(p, q) = 1r. Then by Proposition 5, the excess 

e(O) = 0. By compactness of 0, it follows that the Toponogov curvature of 0 must 

be bounded from below. Thus, by [GP2, Proposition 2.1), 0 can be exhibited as 

a suspension over the set E = {x E 0 I d(p,x) = d(x,q) = ~1r} . Note that the 

boundary of a sufficiently small metric ball centered at p is homeomorphic to E . 

But, by the definition of orbifold, the boundary of this metric ball is homeomorphic 

hom eo 
to a quotient of sn-1 by a finite group f. Hence, E ~ sn-1 jf. Since 0 is a 

suspension we can extend the action of r continuously via suspension to an action 

on sn. Since 0 is a suspension over E, we have shown that 0 is homeomorphic to 

a quotient of sn. The proof is now complete. 

Vle conjecture that, in fact, Theorem 13 holds \\ithout the assumption that the 
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orbifold is good. 

Conj ecture 17 Let 0 be an n - dimensional Riemannian orbifold with Rico ~ 

( n - l) and diam( 0) = 1r . Then 0 is a good orbifold. In particula1·, it must be of 

the form descTibed in Theorem 13. 

R e m a rk 18 Jt should be noted that excess e( 0) = 0 is not enough to assure 

that 0 is a good Riemannian orbifold. For instance, the ZP- teardrop has such 

properties but is not good. 

Exam ple 19 Consider the following singular space: Let X = ~sin S2 (~) . Then 

the Toponogov curvature of X is 2: l, and the diameter of X is 1r . In light of 

the previous theorems, X is not an orbifold. X is an example of a so-called 

cone-manifold. For the definition of cone-manifold, see [HT]. The space X is 

a counterexample to [HT, Theorem 3] which states that a cone- manifold with 

Ric 2: (n- l) and diam ='if must have constant curvature l. 

Finiteness Theore1ns 

The following is a generalization of the finiteness theorem stated in [Al] . 

Theorem 1 In the class Rj/J~(n) of n-dimensional good Riemannian orbifolds 

(M,r) with M simply connected1 RicM 2: {n-l}k1 diam(O) ~ D1 and Vol(O) 2: v, 

there are only finitely many isomorphism classes of r. 

Proof: In [Fl, Prop. 5.1] it is shown that given any point p E M, there exists a 

set. {g1 , g2 , . .• } which generates r and satisfies relations of the form g;gi = 9k and 
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furthermore, d(p, g;p) ~ l3D. Thus, to prove the theorem, it suffices to show that 

there is a bound N (depencling only on n, k, D, v) on the number of generators 

in such a set since the isomorphism classes are determined by the number m of 

generators and a set of relations in { 1, ... , m }3. Choose p fj. E. Then the set 

a = {g E r 1 gp E B(f5, nn)} 

is finite. To see this, suppose this is not the case. Then since p fj. E, there exists a 

sequence {g;} such that {g1jj} is distinct . Hence by compactness of B(p, 13D) we 

we find a convergent subsequence which contradicts (proper) discontinuity. Thus, 

m ~ #G is finite. Let {g1 , ... , 9m} be a generating set. Choose a Dirichlet domain 

iJ c B(p, D) . Then Vol iJ = Vol 0 ~ v. By construction, g;V n iJ has measure 

zero for all i . Therefore, 

m · Vol iJ ~ #G · Vol iJ ~ Vol B(p, l5D) :::; Yolk B(p, l5D) 

which implies that 

#G 
Yolk B(p, l5D) Yolk B(p, l5D) clef 

< - < = N 
- Vol 'D - v 

N clearly depends only on n, k, D, v and this implies that the cardinality of any 

generating set of r is uruversally bounded in R and hence the possibilities for f 

are only finite up to isomorphism. This completes the proof. 

In order to prove the next convergence theorem we will need the following results: 

Theorem 2 (Anderson-Cheege1)[AC} The space of complete n-dimensional Rie-

mannian manifolds with RicM ~ (n- l)k, injM ~ i0 is precompact in the CQ 
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topology. In particular, gwen a sequence { M;} of such manifolds, some subse-

quence converges to a ca Riemannian manifold Moo. 

Theorem 3 (Fukaya- Yamaguchi}[FY} Let M denote the set of all isometry 

classes of pointed length spaces (X, p) such that for each R, the metric ball B(p, R) 

is relatively compact. Let Meq be the set of triples (X, f,p), where (X,p) E M 

and r is a closed group of isometrics of X . Let (X;, f;, p;) c Meq> (Y, q) E M. 

Suppose the Hausdorff limit 

Then there exists a group G and a subsequence ik such that (Y, G, q) E Meq and 

in the equivariant Hausdorff sense. 

Theorem 4 (Fukaya)[Fl} Let (X;, f;, p,), (Y, G, q) E Meq such that 

in the equivariant Hausdorff sense. Then 

lim(X;/r;,p;) = (YjG,q) 
t-.oo 

in the ordinary Hausdorff sense. 

We will need the following 
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Lemma 5 Let (M, f) be a good Riemannian orbifold with RicM ~ (n - l)k, 

diam( 0) :5 D, Vol( 0) ~ v then for any compact subset C of lvf with diam( C) = R , 

the cardinality of the set 

G = {g E r 1 gC n c =J 0} 

is bounded above by a constant A which depends only on n, k, D, R, v . 

Proof: Since f acts properly discontinuously, G is finite. Let p E C. Then 

C C B(p, R) . Without loss we may assume R ~ D and it suffices to show that the 

cardinality of the set 

Gfi = {g E f lgB(p, R) n B(p, R) f. 0} 

is uniformly bounded above. Consider the Dirichlet domain 

v = {x E B (p,R) 1 d(fi,x) s d(gp,x) Vg E Gp} . 

Let ffi be the isotropy subgroup of p. Then, if g E Gfi- ffi the set Z = gV n V 

has measure 0. Since gV C B (p, 3R) for every g E GP we conclude that 

I (G - - r -) < Vol B(p, 3R) < Yolk B(p, 3R) d4f 
# P P - Vol V - v A1 . 

Also 

Vol B (p, R) Volk B(p, R) dci 
# rp- < < = A2 . 

- VolV - v 

Let A = A1 + A2 • This completes the proof. 

We now wish to present the following convergence theorem: 
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Theorem 6 Let (M;, f;) = 0; be a sequence of n-dimensional good Riemannian 

orbifolds with RicM, 2: (n- l)k, injM, 2: i 0 , diam(O;) ~ D, and Vol(O;) 2: v. 

Then a subsequence of the 0; 's converges to an-dimensional Get orbifold 0
01

:n a < 

1. This means 0 00 = (Mcxn roo) where M00 is a n - dimensional ca Riemannian 

manifold and roo is a discontinuous group of isometries of M00 • 

Proof: By lbe previous theorems we need only to show that roo acts discontin­

uously. Let p E M 00 , and suppose 9nP ~ q with {gn}~=l all mutually distinct 

elements of roo· ChooseR so that d(p,q) ~ ~R. Let p; ~ p, q;- q and gii)........, 9n· 

Thus, g~i)p; - gnp as i ~ oo. Note 

which implies that 

where c; _. 0 as i _. oo. Hence for large enough n and i, we have 

Let i be large enough so that d(p;, q;) ~ ~R. Then 

for large n and i because 
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By the Lemma, however, the number of such g~i) is bounded by a constant A 

independent of i . Let A1 ::::; A be the number of distinct elements g~il and relabel 

them { g~i)} ~~1 . The claim is that the number of limit points from the doubly 

indexed set { gi'l} ( n = 1, A; , i = 1, oo) is ~ A . To see this suppose that there 

are at least A+ 1 distinct limit points {gl) ... ) gA+l} c roo· Then there exists 

p~ik)-+ Pikl and choose sequences converging to g1, ... ,gA+I · i.e. g)')-+ 9i · Then 

for sufficiently large i, we have 

for j = 1, ... , A + l. The existence of the bound A guarantees that some g)'l = 

(i) 
gk , k =/:- j . But then 

but then 

which is absurd. Hence the set of limit points is finite, contradicting the fact that 

the {gn} ~=1 were chosen to be mutually distinct. This completes the proof. 

R em ark 7 Note that the Ricci curvature condition and injectivity radius condi-

tion on the M;'s could be replaced with any other set of conditions which guarantee 
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that the Mi will (sub )-converge to a Riemannian manifold whose metric is of class 

Ck,{) for some 0 ~ k ~ co and 0 ~ {3 < 1. Then the proof above gives a corre­

sponding precompactness result for orbifolds. 

In view of this convergence theorem one would hope that a finiteness theorem of 

some sort would bold. Our intuition is that the presence of singular points absorbs 

volume. Thus, in the presence of a lower volume bound it might be possible to 

quantify up to finitely many possibilities what kinds of singular points can arise. 

For example consider the class of compact n-rnanifolds M wi tb no conjugate points. 

Then it follows that the universal cover M is diffeomorphic to Rn, and thus r.1 (M) 

is torsion free. If we further assume that RicM ~ (n- l)k, diam(M) ~ D , and 

Vol(M) 2:: v then by a paper of Anderson the 1-systole, sys1 (M ) ~ 80 > 0. It 

then follows that the injectivity radius inj(M) 2:: i 0 > 0. Hence a subsequence of 

any sequence {Afd of such manifolds will converge to a ccr Riemannian manifold. 

Hence no orbifold degeneration can occur. A possible conjecture along these lines 

:might be: 

Prob lem 8 Let (Mi, f; ) be a sequence of orbifolds with Mi as above. Then if the 

sing'Ular set of each of the orbifolds consists entirely of isolated points) is it true 

that all singular points in the limit orbifold are isolated and that their quantity and 

type is unifonnly bounded? 

54 



The Closed Geodesic Problem 

A classical theorem of Lyusternik and Fet states that on every compact Rie­

mannian manifold there exists a closed geodesic. See [Kl}. An obvious question 

is whether this generalizes to orbifolds. A partial result in this djrection is the 

following: 

Proposition 1 Let 0 be an n- dimensional} compact Riemannian orbifold. If 0 

is not simply connected
1 

then 0 contains at least one closed geodesic. 

Proof: Let C be a non-trivial free homotopy class. Let f. = inf {L(e) I e E C} . 

Then e > 0, for if there exists a sequence {en} : [0, 1] __. 0 such that L( en) __. 0 

wi th en parametrized proportional to arc length , then by the Arzela- Ascoli theo­

rem some subsequence of {en} converges to a continuous curve c. Since length is 

lower- semicontinuous, we ha,·e L(c) = 0 which implies e is a constant path. But 0 

is locally simply connected, hence en "'c for large n which is a contradiction. Thus, 

e > 0. row choose a sequence {en} such that L(en) <f.+~ - Then as before, {en} 

form an equicontinuous family with {cn(t)} bounded. Hence en__. c a continuous 

curve in C. We have L(c) Sf. and hence by definition of e, L(e) =e. We now show 

that e is a closed geodesic. If en E = 0, then e is a closed geodesic, for otherwise it 

could be shortened locally. If en E =f:. 0, then c c E, for otherwise, by applying the 

structure theorem for geodesics, we can get a shorter curve c"' c with c n E = 0, 

which contradicts construction of c. Finally, consider the case where e C E. Then e 

must be entirely contained within a stratum of E, and the argument above applies 

55 



to this stratum to yield the existence of a closed geodesic. This completes the proof. 

I am now working on a generalization of this result, namely: 

Conjecture 2 Let 0 be ann- dimensional, compact Riemannian orbifold. If there 

exists 1 ::;: k::;: n such that nk(O) # 0, then 0 contains at least one closed geodesic. 
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